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ARTICLE INFO ABSTRACT

Keywords: As our understanding of ecological systems grows, natural resource management becomes ever more dependent

Vegetation on timely, accurate, and inexpensively-collected monitoring data to support management decisions. Vegetation

Density cover, density, and frequency are abundance metrics used in resource management; however, frequency data can

Ell'lequencyh be collected more quickly than density data and with more repeatability and less sensitivity to inter- and intra-
otography

seasonal variation in plant morphology. Moreover, frequency is perhaps the best method for monitoring invasive
species across extensive areas. A limitation to the use of frequency data is that plot size affects frequency. The
optimal plot size is one that yields measurements suitably removed from 0 or 100% to allow detection of both
upward and downward frequency trends, yet the optimum plot size cannot be known before sampling. We
addressed this conundrum by developing SampleFreq software that facilitates frequency measurements from
digital nadir images of any scale with up to 10 nested plot sizes within the confines of the image dimensions. We
conducted accuracy and agreement tests of the software using both artificial populations and field plots. Using
artificial population plots, accuracy across all users was 93.4% with a repeatability coefficient of 1.4%, in-
dicating high precision. In a field test, SampleFreq and standard field data averaged a 3.4% difference, and were
within approximately 10.5% of each other 95% of the time. From the same field test, SampleFreq repeatability
coefficient was 6.7%, while the field method was 4.3%, illustrating that both methods have relatively high
precision. Because SampleFreq has high potential accuracy, high agreement with field data, and high precision
across a range of users, we recommend using SampleFreq with nadir digital images as a suitable alternative
method for monitoring plant frequency.

Monitoring

1. Introduction collectively own, and fund management of, public lands end up paying
too much.

“Would it not be presumptuous to think that all conceivable break- Vegetation abundance measurements regularly used in environ-

throughs in sampling methodology have now been made, that all we must mental surveys are cover, density, frequency, and mass (Mueller-

do is refine the known techniques and standardize their use?” —Shultz, Dombois and Ellenberg, 1974; Elzinga et al., 1998). Frequency is the

Gibbens & Debano (1961) percentage of sample plots in which a species of interest occurs (Hyder
et al., 1963). Occurrence may be rooted frequency (positive count only
if the plant is rooted in the plot/frame), or more rarely, canopy fre-
quency (any part of the plant in the frame is a positive count), in which
the sample contains most of the species of interest (Hyder et al., 1963;
Barbour et al., 1987). Density is a count of units per area (e.g. stems/
m?), whereas frequency only measures presence or absence within the
unit area. By avoiding determination and counting of separate units,
frequency data can be gathered with greater speed than density data
(Elzinga et al., 1998). Though often correlated with cover in homo-
genously-distributed plant communities, frequency can, and does, vary
independently from cover (Barbour et al., 1987; Elzinga et al., 1998).

Natural resource management decisions depend on timely, accurate,
inexpensively-collected monitoring data. Land management agencies
like the United States Bureau of Land Management or the United States
Forest Service are tasked with approving or renewing permits for
commercial land use (e.g. grazing, mineral extraction) that rely on
monitoring data. Where those monitoring data are not produced in a
timely manner, delays in permitting cost commercial enterprises and
reduce or delay royalties to the federal government. Where those
monitoring data are inaccurate, the resource condition may not actually
support the management decision. Where those data are collected at
great cost, either insufficient data are collected or the citizens who
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For example, frequency can remain constant for a single plant in a
frame, while cover could increase severalfold during the growing
season. This intra-season stability of frequency data is a method ad-
vantage. Frequency data are collected simply, quickly, and objectively
with high repeatability, since decisions are limited to presence/ab-
sence. Frequency is less sensitive than cover or density to inter- and
intra-seasonal variation in plant morphology (Elzinga et al., 1998;
Coulloudon et al., 1999). Walker (1970) found that among 8 mon-
itoring methods, frequency documented the most species, and he con-
cluded, “Frequency was the only method to provide acceptable estimates of
the importance of all species without the expenditure of excessive amounts of
time”. Of all methods, it is perhaps the best for detection of exotic
species invasions across large areas, since the principle question is that
of simple presence.

Frequency precision = 100%/n, and thus the method requires large
sample sizes, on the order of 20-50 plots, to achieve useful detection
precision. For example, 20 plots yields a detection precision of 100%/
20 = 5%, but changes in frequency < 5% will be undetectable.
For = 1% precision, 100 plots are required. The frequency method’s
principal limitation is that plot size and shape dictate frequency, and
temporal or spatial comparisons of frequency are only valid across
same-sized plots (Elzinga et al., 1998), a limitation not shared by
density or cover data. Optimal plot size is one that yields frequency
measurements suitably far enough away from 0% or 100% to allow
detection of both upward and downward frequency trends. For ex-
ample, a plot size that returns a frequency measurement of 10% will
only ever be able to record a frequency reduction of 10%; any fre-
quency reduction beyond that will be beyond the limit of the plot size to
measure (Coulloudon et al., 1999). A plot size yielding frequency be-
tween 20 and 80% imparts maximal change detection across a wide
range of dispersion patterns (Coulloudon et al., 1999; Heywood and
Debacker, 2007). Curtis and McIntosh (1950) concluded that the op-
timal plot size is ~2X the mean area of the most common species, and
the smallest that detects all randomly-distributed species at < 86%
frequency. Given those guidelines, Hyder et al. (1963) calculated that
15-25 cm square plots best measured frequency in Oregon sagebrush/
Idaho fescue rangeland. Hyder et al. (1965) determined that 5-40 cm
square plots best measured frequency in Colorado shortgrass prairie.
Mosley et al. (1989) calculated that 5-50 cm square plots best measured
frequency in Idaho mountain meadows. All of these studies determined
optimal plot size after data were collected. Determining the optimal plot
size prior to field work is largely guesswork, or as Hyder et al. (1963)
put it, “less objective than one might desire.” Given expectations of
varying frequency by species, nested frequency plots maximize sam-
pling efficiency across multiple species by improving the chance that at
least one of the plot sizes within the nested set is near-optimal for every
species of interest (Coulloudon et al., 1999). However, even nested plot
sizes are determined a priori, with no guarantee that nested plots con-
tain an optimal plot size for every species of interest, or that a given plot
size will be optimal for a particular species over time. Thus, the dis-
advantage of nested frequency plots is that the first observations lock in
the plot sizes that must be used forever after if the data are to yield
trend information.

A disadvantage of all field methods is susceptibility to classification
variation by users (Vittoz and Guisan, 2007). For example, Walker
(1970) recorded 10% user variation with line point intercept, and this
number was confirmed by Cagney et al. (2011) who reported 11% user
variation with the same method. It is rare that a single technician re-
cords field data for a particular area over multiple decades, and so any
temporal change that appears to occur in landscape vegetation data is
potentially the product of different users and their varying classification
definitions and styles as much as actual changes in vegetation. Even if a
single technician did collect data over multiple decades, it is reasonable
to assume changing skill level and visual acuity of that technician over
time further biasing data interpretation.

To overcome these disadvantages, we developed SamplefFreq

Ecological Indicators 121 (2021) 106946

(2020). This free software facilitates nested frequency classification
from digital images and allows ad hoc selection of nested plot sizes
within the confines of the image dimensions. This essentially allows
users to “go back in time” and redefine plot sizes for image data sets at
will, utilizing a plot size that is not just optimal at one point in time, but
over all points in time (as opposed to a field-sampling plot used at a
moment in time that can never be resized). SampleFreq utilizes digital,
nadir images of any scale that are often already collected for other
image analysis purposes, such as vegetation cover with SamplePoint
(Booth and Cox, 2008; Curran et al., 2020), linear feature measure-
ments with ImageMeasurement (Booth et al., 2006a), green cover
measurements with eCognition or VegMeasure (Laliberte et al., 2007;
Louhaichi et al., 2001) or species cover measurements with Imagine
(Everitt et al., 2001). The US Forest Service, the Natural Resource
Conservation Service and the Bureau of Land Management have re-
commended collection of plot photos for more than 20 years
(Coulloudon et al., 1999), resulting in large collections of permanent
photographic records that can be analyzed, or reanalyzed, with Sam-
pleFreq. In this study, we sought to validate the operation of this
software in order to allow land managers to use it confidently for ve-
getation monitoring.

Accuracy is close agreement of sample means with actual parameter
means. Precision is close agreement of sample means to each other,
without reference to the true mean (Barbour et al., 1987). SampleFreq
was designed to facilitate measurements with high accuracy and high
precision—we tested the null hypothesis that SampleFreq measure-
ments would be neither. Our goals in this study were to assess 1) the
accuracy and precision of the software by using known, artificial po-
pulation plots, 2) the agreement of data collected using the software
with that of standard field-collected data, and 3) the precision of soft-
ware measurements from field images.

2. Materials and methods
2.1. SampleFreq software

SampleFreq software facilitates manual nested frequency object
classification of digital images of any known scale. We developed
SampleFreq using the C# programming language as a tool to measure
plant frequency, though it could be used to measure frequency of any
visible object. SampleFreq’s user interface allows a user to define up to
10 nested frame sizes, define up to 60 object classes to measure, and
then facilitates nested frequency measurements from nadir-perspective
images by requiring presence/absence determination by the user
through the act of clicking on-screen buttons (Fig. 1). Classification data
are automatically saved to an Excel spreadsheet (Microsoft, Redmond,
WA, USA). A user can adjust image brightness, contrast, and magnifi-
cation, to see detail. Upon analysis completion, users can create a
summary spreadsheet of the nested frequency data that is comparable
in format to standard field data results.

2.2. Creating artificial random populations for testing software accuracy
and precision

Accuracy assessment requires a standard for comparison. Curtis and
McIntosh (1950) evaluated accuracy of frequency frame sizes using
large photographs of scattered, recognizable objects (nuts, safety pins)
as artificial populations. We employed a similar strategy and created
artificial populations of colored dots within digital images in order to
precisely define the comparison standard, accepting the disadvantage
that these colored dots do not replicate real world vegetation shapes or
colors.

We used ArcMap 10.0 (ESRI, Redlands, CA, USA) to fill a virtual
4 X 5-m rectangle with 10 random point populations. Each population
was represented by a unique color and symbolized as 2-cm diameter
dots (3.14 cm?), where dot density varied with dot color (Table 1).
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Fig. 1. SampleFreq screenshot showing series of 8 nested frames (yellow boxes with active frame in red) overlaid on one of 20 (A) artificial population images of
randomly-distributed colored dots and (B) field-trial images acquired in mixed-grass prairie. User-defined classbuttons are shown on the bottom with presence (yes)

or absence (no) classification options.

Some colors are naturally more eye-catching, and we anticipated
that some bright colors, such as red, might be more accurately mea-
sured. Color as a variable is qualitative, categorical, and thus not
readily subject to statistical comparison, but color luminance is a
quantitative, discrete variable that is measurable. Color luminance de-
scribes emitted light, but in digital imagery, potential emitted light has
limits, resulting in light emissions constrained by the gamut of the
display hardware (Poynton, 1996). Simply put, a computer monitor
isn’t bright enough to display real-world color and brightness. As a
result, image colors are described by luma, which is formulated from

Table 1

the gamma-compressed RGB values of digital images. If shown three
equal intensities of color: red, green, and blue, humans perceive green
as brighter than red, and red brighter than blue (Poynton, 1996). To
compensate for this physiological feature of the human eye, coefficients
are added to the luma equation to weight the primary colors based on
an international standard (Rec. 601), thus giving digital images high-
fidelity color (Poynton, 1996; Bezryadin et al., 2007). Color luma was
calculated using a set of standardized correction coefficients, as follows
(from Poynton, 1996):

Color, density, luma and luma rank of random dot populations used in the artificial population, along with classification accuracy across all users (n = 15) by color,
including the sum of all omission errors, commission errors and combined errors. For each color, there were a total of 120 classification values (8 frames X 15 users),
so the total error counts are partitions of 120. Measurement standard deviation (SD) are shown for each color, and overall.

Color Density (dots/m?) Luma Luma Rank Accuracy Omission Errors Commission Errors Total Errors SD

Black 6 0 1 92.5 5 4 9 0.75
Blue 9 95 4 95.8 5 0 5 0.30
Brown 4 116 5 95.0 1 5 6 1.13
Green 8 158 7 100.0 0 0 0 0.00
Orange 7 151 6 92.5 9 0 9 0.78
Pink 1 209 10 95.8 5 0 5 0.45
Purple 2 59 2 85.0 15 3 18 1.54
Red 10 76 3 95.0 0 6 6 0.30
Teal 3 172 8 93.3 5 3 8 1.30
Yellow 5 202 9 89.2 3 10 13 0.54
All 93.4 48 31 79 0.71
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Luma(Y’) = 0.299R’ + 0.587G’ + 0.114B' @

where R’ = gamma-compressed red band value, G’ = gamma-
compressed green band value and B’ = gamma-compressed blue band
value. For all tests in this study, the luma of each color was used as a
single-number quantitative surrogate for color that allowed us to con-
duct statistical tests on color effects. As each color has a unique luma,
the terms color and luma are largely interchangeable in the context of
our results.

We saved the resulting figure as a 4000 x 5000-pixel TIF file, with
resulting resolution of 1-mm ground sample distance (GSD = the real-
world distance depicted by one side of a square image pixel). We sliced
this image into twenty 1000 X 1000-pixel squares (1 x 1 m) using
PhotoShop 12.0.3 (Adobe, San Jose, CA, USA), saving each square as a
PNG file named sequentially 1-20. This process created a group of si-
mulated m? quadrat images representing a 10-class population with
random distribution and known frequency for each color.

2.2.1. Measuring the artificial random populations for testing software
accuracy and precision

We used ArcMap to create a virtual, square-shaped, 8-frame nested
frequency feature class (Fig. 1) and overlaid this 8-frame feature on
each artificial plot. We used the Identity tool to locate dot centers by
frame, and sorted results in Excel to determine the smallest nested
frame occupied by each color in each artificial plot. We entered these
data into a SampleFreq summary file of the same format generated by
the software.

2.3. Software testing

Fifteen rangeland management professionals used SampleFreq 1.0
to measure frequency of all 10 colors across all 20 images from Section
2.2, with the criteria that the dot center must fall within the active
frame in order to be counted (Fig. 1). To ensure standardization, we
provided each user with a SampleFreq database pre-formatted with the
entire image set, the correct image GSD, and the same 8 nested frame
sizes/shapes described above in Section Section 2.2.1. We assessed the
influence of red-green colorblindness on SampleFreq performance by
including a 16th user with this condition, but these data were not used
in calculations of overall accuracy or precision of the software.

2.3.1. Accuracy assessment

We compared each of the 15 users’ 80 measured frequency values
(10 colors x 8 frames) with the standard. Since the artificial population
frequency is known, we simply graded user responses against known
values. The proportion of correct user responses is the user accuracy.

We tested for differences in user accuracy by color and by frame size
(1 color x 8 frames/user; 1 frame X 10 colors/user) using a non-
parametric Kruskal-Wallis test, followed by pairwise Wilcoxon Rank
Sum tests with Bonferroni-corrected alpha to control Type I error
(nparlway procedure, SAS 9.2; SAS Institute, Cary, NC). Since density
varied independently by color (density and luma are not correlated;
Table 1), we examined the pattern of accuracy by both color and dot
density. We identified classification errors (among 80 classifications/
user) into errors of omission (a user failed to count a dot in the frame it
occurred) and commission (a user counted a dot in a frame where it
didn’t exist), and similarly tested these for differences by luma to assess
whether some colors were more prone to errors of commission or
omission (Kruskal-Wallis test, pairwise Wilcoxon Rank Sum tests with
Bonferroni’s alpha correction). As with accuracy, tests of differences by
color also tested differences by density. All relationships were also as-
sessed with correlation coefficients (Excel 2016; Microsoft, Redmond,
WA), to determine the extent, if any, of linear relationships “accu-
racy X luma/density”, and “errors of omission/commission X luma/
density”.

User responses were regressed on known standard values to
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generate coefficients of determination (r?) to describe how well user
measurements fit the artificial population values across the full range of
potential frequency values. A coefficient of determination is not by it-
self a test of accuracy since data can be highly correlated, but offset;
however, in combination with other tests, a regression can add to the
understanding of how two data sets relate to each other (Bland and
Altman, 1986). The regression line can indicate method disagreement
and bias, if the slope and Y-intercept are appreciably different than 1
and 0, respectively.

We compared user accuracy by gender and the use of corrective
lenses with Welch’s T-tests to correct for unbalanced sample sizes. We
used coefficients of determination to assess relationships of age (6 levels
of 5-year interval groups) and screen resolution (5 ranked levels) with
accuracy. Specifically, age was recorded by 5-year interval, and a
person was classified as wearing corrective lenses if they wore eye-
glasses or contact lenses on a regular basis.

2.3.2. Precision assessment

Measurement standard deviation is a simple measure of precision,
and when multiplied by 1.96, becomes the repeatability coefficient,
which is the value below which the absolute differences between two
measurements would lie with 0.95 probability (Bland and Altman,
1986, 2003). We calculated measurement standard deviation by frame
size, and by color. We then calculated the overall method repeatability
coefficient.

2.4. Agreement with the nested frequency field method

Users of the software should be confident that data generated using
SampleFreq will replicate data collected using a standard nested fre-
quency frame. We tested a null hypothesis that the two methods will
have significant and meaningful differences.

Twenty random plots were established within a 10-acre polygon of
mixed grass prairie at the High Plains Grassland Research Station in
Cheyenne, WY (41.183°, —104.900°). Each plot was 1 X 1 m square,
marked with 4 orange nails and a numbered survey flag for easy lo-
cation by recruited observers. One person acquired nadir images of all
plots in 24 min using a Canon 1100D 12-megapixel digital camera
mounted on a 2 m-AGL aluminum camera frame, as described by Booth
et al. (2004). (We have since determined that a monopod-mounted
camera is more efficient than the aluminum frame in most situations;
see Curran et al., 2020). Images were acquired with the camera set to
aperture priority mode (f/14), ISO = 200, with a resulting shutter
speed range of 1/60-1/160 (We now know that 1/60 s is too slow a
shutter speed and often results in blurred images when examined at the
pixel level. We recommend using < 1/250 s). Images were cropped to
the plot corners using Photoshop CS5 (Adobe, San Jose, CA), color-
balanced to achieve natural color and illumination, and resized to ex-
actly 2100-pixels wide to ensure all images were of equal resolution
(0.48 mm GSD).

We measured rooted frequency of 5 forb species using the same 8
nested square frame sizes/shapes as the artificial population test above.
To align field and software observations, two nested frequency frames
were fabricated out of 1-cm steel rod and 2.5-cm steel angle stock, like
the design illustrated by Coulloudon et al. (1999). Twelve rangeland
professionals were recruited to measure nested frequency from all 20
plots both in the field using the metal nested frequency frame, and in
the lab using SampleFreq 1.0. All observers were given the same data
sheets and written instructions on data collection protocol. All ob-
servers used the same image set to reduce bias from varying photo-
graphy techniques. Half the observers acquired their field data first, and
the other half acquired their SampleFreq data first, to balance potential
bias from performing one method prior to the other. Every observer was
given a directory with a blank SampleFreq database and all 20 plot
images for analysis. Observers classified all images and returned com-
pleted databases and summaries to the authors. One observer did not
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adhere to the instructions to record rooted frequency and recorded
canopy frequency instead; that observer’s data were discarded from
analysis.

To assess method agreement, we compared the standard-method
data to SampleFreq data using a variety of metrics. We plotted the data
with a 1:1 equality line to examine the relationship of the SampleFreq
measurements against the standard field measurements. We calculated
the Pearson product moment correlation coefficient (r) for the re-
lationship, which has some value on its own, but must be interpreted
cautiously: data can be highly correlated without having high agree-
ment (Bland and Altman, 1986). For example, 2 methods that produce
identical results will show r equal to 1, a perfect correlation, but if
method one produces results exactly twice as large as method two, r
still equals 1, a perfect correlation despite low method agreement. For
this reason, r (or r?) alone doesn’t measure agreement. Plotting the data
with a 1:1 equality line protects against incorrect interpretation of the r
statistic.

A low average difference between measurements would seem to be
a good indicator of agreement, except that if some differences are large
positive values, and others are large negative values, the mean of the
values as a surrogate for agreement will be misleadingly low. In fact,
the average difference between measurements is actually measuring
bias: a high positive mean difference indicates that method 1 con-
sistently overcounts, and vice versa. By squaring the differences, cal-
culating the mean, then taking the square root, the effect of positive and
negative differences is removed, so that the root mean square error
(RMSE) measures absolute difference. As a single statistic, the RMSE is
useful for describing overall agreement between data sets but may mask
differences in agreement at various measurement levels and convey a
sense of consistency that may not exist. For example, measurements of
sagebrush frequency may show very low error when sagebrush fre-
quency is low, but very high error when sagebrush frequency is high.
For this reason, RMSE, though useful, must also be interpreted cau-
tiously. We present a data plot, correlation and RMSE because they are
familiar metrics to most; however, there is a better way to assess
agreement.

Bland and Altman (1986) proposed a robust test of method agree-
ment. A variable is measured by two methods, and the difference be-
tween the two values (A-B) is plotted on the Y axis against the mean of
the two values (A + B)/2 on the X axis. This is repeated many times, at
many levels of the variable. The goal is to examine method differences
relative to a true value, but since the true value is almost always un-
known, the average of the two methods is the closest approximation of
the truth available. The resulting distribution illustrates how well two
methods agree. If method differences are evenly distributed both above
and below the mean difference across the entire X axis, and the dif-
ferences are small, then the methods show good agreement. A mea-
surement difference mean of zero indicates no bias, whereas if most
errors are above the mean, then method A is measuring the variable
higher than method B, and vice versa. The standard deviation of those
differences can be used to quantify the agreement further. The em-
pirical rule states that 95% of values will fall within 2 standard de-
viations of the mean in a normal distribution, so by doubling the
standard deviation of the measurement differences (or more precisely,
multiplying by 1.96) and adding or subtracting it from the mean of the
method differences, an upper and lower value are determined that
encompass 95% of anticipated method differences. Bland and Altman
(1986) called these the limits of agreement. A small limits of agreement
interval indicates high method agreement, with the exact determination
of what constitutes “agreement” left to the particular requirements of
the investigator.

Measurement standard deviation is a simple measure of precision,
and when multiplied by 1.96, becomes the coefficient of repeatability,
which is the value below which the absolute differences between two
measurements would lie with 0.95 probability (Bland and Altman,
1986, 2003). We calculated measurement standard deviation by frame
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size, and by species, as we did for artificial population testing above.
We then calculated a repeatability coefficient for both methods.

3. Results and discussion
3.1. Accuracy

SampleFreq accuracy of 10 populations of colored dots was
93.4 = 4.2% and measurements were highly correlated to actual va-
lues (2 = 0.99, p < 0.0001, n = 1200). The best fit line equation for
these data is y = 1.0006x-0.0008, which indicates virtually no method
bias (~zero y-intercept), and a near-perfect relationship between the
measured and known values (slope of 1). For comparison, Booth et al.
(2006b), Booth et al. (2006¢) reported cover-method coefficients of
determination (r?) to known cover values of 0.99 for steel point frame
and SamplePoint, 0.98 for line point intercept, and 0.97 for laser point
frame and ocular estimate. SampleFreq measurements show parity with
these cover measurement methods. Individual user accuracies ranged
from 85.0 to 97.5% (n = 80). A red-green colorblind user’s accuracy
was 92.5%, not significantly different than the mean accuracy for all
users.

3.2. Accounting for the average 6.6% error

Though the error with SampleFreq is small, it is worth exploring the
sources of error to determine if the method suffers from any systematic
bias.

3.2.1. Neither color nor density explain accuracy variance

Accuracy varied by dot color (p = 0.0038, n = 15) in only 2 of 45
comparisons: yellow differed from brown (p = 0.0004, n = 15) and
green (p < 0.0001, n = 15), all of which have mid-range luma and
density (Table 1), thus neither variable explains the variance in accu-
racy. The lowest accuracies were with purple and yellow, the 2nd
lowest and 2nd highest luma, respectively, with densities of 2 and 5
dots/m?, neither of which support a trend of accuracy by luma or
density (Table 1). The red-green colorblind user was the only one to
misclassify any green dots (2), but did not misclassify any red dots,
though 33% of observers did.

3.2.2. Accuracy varied by frame size

Accuracy across all nested frequency frame sizes is presumed to be
equal (e.g., accuracy from a 2-m? frame should equal that from a 0.5-m?
frame within the same nested series). Though careful classification by a
user should affirm this assumption, we found that in practice this was
not the case. Accuracy varied within the nested frame set by frame size
(p = 0.0002, n = 15), with mid-size frames showing lower accuracy
(Fig. 2). We speculate this is caused by two opposing trends. The
smallest frame has the lowest probability of containing dots (Fig. 1),
and thus presents a simpler classification scenario, e.g., if there are no
dots in frame 1, it is easy to classify correctly. As frame size increases,
users must scan more area with greater probability of encountering
multiple dots, presenting increasing classification complexity and error
risk. This trend is evident through the first four frames (Fig. 2). An
opposite trend arises from the cumulative nature of nested frequency
counts (each larger frame includes the entire area of all previous
frames). Once a color is counted as present, it retains that status
through subsequent frames. At some frame size, a color can achieve
100% presence across all plots, and from there on, it is always 100%,
and the user does not have the option to classify it. This reduces the
number of decisions a user must make at each subsequent frame. For
example, Table 2 shows all ten colors < 100% frequency in frame 4 and
a user must look for all ten; in frame five, two colors show 100% fre-
quency, and are then “retired” from classification, so the user has only
to look for eight colors, by frame 6, only six, and so on. This ever-
decreasing classification complexity yields decreasing probability of
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Fig. 2. Frequency measurement accuracy (n = 15 users) across all colors by
nested frame size. Significant differences between frame sizes are noted with
differing letters.

Table 2

Artificial population frequency by color and nested frame size. Each value in
this table represents the known frequency of colored dots in the artificial po-
pulation of 20 images against which observer data were graded.

Color Frame Size (m?)
0.01 0.05 0.1 0.2 0.4 0.6 0.8 1

Red 0 30 55 90 100 100 100 100
Blue 15 30 55 85 100 100 100 100
Green 10 45 65 85 90 100 100 100
Orange 0 45 60 85 95 100 100 100
Black 5 20 35 70 85 90 95 100
Yellow 5 40 45 65 70 90 100 100
Brown 5 25 35 55 70 90 95 100
Teal 0 10 25 50 75 85 90 100
Purple 0 0 10 20 30 60 80 95
Pink 0 5 10 20 30 45 55 65

making errors, demonstrated with a general accuracy increase from
frames 5 to 8 (Fig. 2). We speculate these two trends explain the dip in
accuracy among the mid-range frames in the nested plots. The im-
plication for vegetation surveys is that not only does frame size have to
be constant over time (Elzinga et al., 1998), but all frames within a
nested frame design must also be constant: a 1 m? frame that is the
smallest of six nested frames is not comparable to a 1 m? frame that is
the mid-size of six nested frames. Given that complexity within frames
seems to influence accuracy, subdividing larger frames to reduce frame
complexity while conserving whole-frame tallies may mitigate this
error risk.

3.2.3. Accuracy by user gender, age, and eyesight—age matters

Across 15 users, accuracy did not vary by gender (p = 0.52,n = 5
men, 10 women) or by corrective lens use (p = 0.91, n = 6 with, 9
without). Accuracy increased with higher screen resolution (r = 0.63,
p = 001, n = 6) and was 4.5% greater with resolutions of
>1280 X 1024 (p = 0.04, unbalanced t-test n = 7 < 1280 x 1024,
n = 8 = 1280 X 1024), though this doesn’t imply causation.

Accuracy decreased as user age increased (r = —0.58, p = 0.03,
n = 6 age classes [range = 20-54]). We have previously reported age-
related classification bias in point intercept cover data collected both in
the field and from a computer screen (Booth et al., 2005; Cagney et al.,
2011). Diminished visual acuity is often associated with age-related
changes in the eye. User visual acuity was not clinically rated, but we
used corrective lens use as an admittedly imperfect indicator of visual
acuity and found no relationship with user age (r = 0,p = 1.0,n = 6
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age classes). Diminished visual acuity might also be expected to be
associated with lower screen resolution preference, where text and
objects appear larger and are thus easier to see, but age was not related
to chosen screen resolution (r = 0.44, p = 0.10, n = 6), nor was
corrective lens use (r = 0.20, p = 0.45, n = 6). Thus, we have no
indication that visual acuity of users in our test group is related to age
and have no other data to test or explain why classification accuracy
decreased with user age.

3.2.4. Omission and commission errors

Cumulatively, users made 48 omission and 31 commission errors,
often associated with dots on the boundary between two frames, where
a user had to determine dot center location. This situation explains 60%
of omissions and 74% of commissions, values that do not indicate
systematic bias. In field applications, we expect a similar distribution of
errors among users determining whether to include a plant within a
frame.

Omission errors varied by color (p = 0.0181, n = 15), though we
found no significant pairwise differences, and no correlation with luma
(r = 0.22, p = 0.52, n = 10 luma classes; Table 1). Purple dots
(luma = 59) were omitted most frequently (Table 1). Black has lower
luma (0) and was only omitted a third as often. The next brighter color,
red (luma = 76), was not omitted at all (Table 1). Thus, we have no
evidence the luma systematically influences omission. Purple dot den-
sity was low (2 dots m?), yet pink (1 dot/m?), and teal (3 dots /m?)
were omitted only a third as often, while the second highest omission
rate belonged to orange (7 dots/m?). Density was not correlated with
omission errors (r = 0.48, p = 0.16, n = 10 density classes; Table 1).

Commission errors also varied by color (p < 0.0001, n = 15), with
yellow added more often than blue, green, orange, and pink
(p < 0.001, Table 1). However, these results do not indicate any re-
lationship between color and commission errors. Overall, there was no
relationship between commission errors and luma (r = 0.13, p = 0.72,
n = 10) or density (r = 0.06, p = 0.86, n = 10).

3.3. Precision from artificial populations

There are several ways to think about repeatability with
SampleFreq. One indication of precision is that the slope of the mea-
sured-to-known frequency regression line had an extremely narrow
95% confidence interval of 0.997-1.005. Another indicator of high
precision is that classification measurement standard deviation across
all colors through all frames is 0.71% (Table 1), yielding a repeatability
coefficient of 1.4%. In other words, two frequency measurements of the
same variable will be less than 1.4% different, 95% of the time (Bland
and Altman, 1986). However, examining standard deviations by frame
size and color allows for a more nuanced interpretation (Table 3).

Table 3
Standard deviations of all measurements by frame size and color recorded
during the artificial population trials. Lower values indicate higher repeat-
ability.

Color Frame Size (m?) Mean

0.01 0.05 010 020 040 060 0.80 1.00

Black 0.00 0.00 000 229 129 244 0.00 0.00 0.75
Blue 0.00 0.00 0.00 244 0.00 0.00 0.00 0.00 0.30
Brown 1.29 129 129 129 129 129 0.00 1.29 1.13
Green 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Orange 0.00 1.76 3.20 0.00 1.29 0.00 0.00 0.00 0.78

Pink 0.00 0.00 0.00 0.00 0.00 1.29 229 0.00 045
Purple 0.00  0.00 1.76 1.89 207 280 1.29 254 1.54
Red 0.00 0.00 0.00 244 0.00 0.00 0.00 0.00 0.30
Teal 0.00 1.29 1.29 1.89 207 258 1.29  0.00 1.30

Yellow 0.00 176 0.00 0.00 0.00 254 0.00 0.00 0.54
Mean 0.13 061 075 122 080 129 049 038 071
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Repeatability, evidenced by smaller measurement standard deviation, is
highest for green, blue and red, while it is lowest for teal, purple and
brown, a pattern that does not indicate a relationship of repeatability
with luma (r = 0.15, p = 0.67, n = 10) but does suggest a positive
relationship with density, as red, green and blue are also the colors with
the highest dot density (Table 1). Density seems to explain much of the
variance in repeatability across colors (r = 0.63, p = 0.049, n = 10).
Repeatability differed, barely, by frame size (p = 0.04, n = 15), though
no pairwise differences were observed at the Bonferonni-corrected
alpha. Repeatability was highest for the smallest and largest frame sizes
(SD = 0.13%, 0.38%, respectively), and lowest for the mid-frame sizes
(SD = 0.49-1.29%); the same pattern seen with accuracy (Table 3). We
speculate that the same factors involved with a dip in accuracy across
the mid frame sizes are at work here, though overall, a repeatability
coefficient of 2.5% at a mid-frame size (0.6 m?) still shows very high
precision: there is 0.95 probability that any two measurements at this
frame size should differ by < 2.5% (Bland and Altman, 1986).

3.4. SampleFreq agreement and precision compared well with the standard
field method

Up to this point, we have only discussed data derived from artificial
population tests. The frequency of the artificial population was pre-
cisely known, which allowed us to confidently assess method accuracy,
and explore errors of omission and commission. Field plots do not share
this quality. Their metrics are unknown and are measured by methods
that may be subject to bias or error. Their frequency can never be de-
termined with certainty. For this reason, we cannot assess accuracy of
the software by examining field data, but we can assess agreement and
precision. We approached this comparison with the assumption that
neither method is inherently “correct”.

By all measures, SampleFreq data agreed very well with data from
standard field methods. When plotted against each other, the data
clustered along the 1:1 equality line, with no apparent bias (Fig. 3).
Over 52% of all measurements were in perfect agreement between the
two methods, and over 83% of measurements differed by <5%. Overall
correlation of data between the two methods was 0.95 (n = 440), with

80+

R = 0.95 (n=440)
y=0.98x+ 0.5

o
<

+ El Thistle

A Fringed Sage

O Globemallow

¢ Gumweed

e Toadflax

== Regression Line
1:1 Equality Line

Frequency measured by
SampleFreq
3

0 20 40 60 80

Frequency measured by
Field Method

Fig. 3. Frequency measured by SampleFreq (Y) plotted against the standard
field method (X). A line showing a perfect 1:1 equality is shown for reference.
All 440 measurement comparisons are incorporated in the regression, but du-
plicate combinations (e.g. 5% SampleFreq x 5% Field), mask each other.
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Table 4

This table shows the agreement between data sets collected using SampleFreq
and the traditional field nested frequency frame method. Agreement is ex-
amined by species, and by plot size. Overall agreement between methods is high
(R = 0.95, RMSE = 3.4%, n = 440).

Species r RMSE (%)
fringe sage 0.99 0.4
globemallow 0.85 5.3
gumweed 0.98 2.8
thistle 0.80 4.3
toadflax 0.97 4.0
Plot (m?)

0.01 0.14 1.1
0.05 0.54 2.2
0.1 0.69 4.4
0.2 0.92 2.1
0.4 0.81 5.5
0.6 0.89 4.8
0.8 0.93 3.5
1 0.94 3.7
All 0.95 3.4

a regression line equation of y = 0.98x + 0.5. The slope of the line is
virtually 1, indicating consistent agreement, and the Y-intercept is 0.5
(Y axis units are % Frequency), indicating low bias (Fig. 3). Overall
RMSE was 3.4% (n = 440). Given that a 20-plot frequency trial has a
precision of only 5%, an error of 3.4% is less than one sampling unit.

Correlation of data between the two methods by species was always
high (r > 0.8, p < 0.0001, n = 88) with RMSE always low
(RMSE < 5%, n = 88, Table 4). Agreement of data by frame size was
mixed: RMSE for all frame sizes was < 6%; data were well correlated
for the 6 largest frame sizes (> 0.69), but not well correlated for the 2
smallest frame sizes (< 0.54, n = 55, Table 4). This lower correlation
at the smaller frame sizes was due to the preponderance of “0” fre-
quency values that were quickly skewed by even a few positive fre-
quency values. Examination of the raw data reveals that at those small
frame sizes, species presence was recorded 11 more times (out of 110
individual frame reads) using SampleFreq than the field method.

A plot of the method differences over the mean between the two
methods (Fig. 4) shows an even distribution of error at all sampled
frequency values. We expect 95% of differences between the two
methods will lie within 2 standard deviations of the mean (or, more
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Fig. 4. Differences between all pairs of measurements from SampleFreq and the
standard field method are plotted against the mean of those paired measure-
ments. The mean difference between methods is —0.07, which is visually in-
distinct from zero; 95% of differences are expected within 2 standard deviations
(2 s) — the Limits of Agreement — which are denoted as dashed lines. All 440
measurement comparisons are incorporated in the limits of agreement test, but
duplicate combinations (e.g. 0% difference at mean 15% frequency), mask each
other.
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Table 5
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Frequency measurement standard deviation values are used as indicators of repeatability. This table shows the standard deviation of all measurements by frame size

and species for measurements recorded during the field trials by 12 observers.

Method Species Frame size (m?) Mean
0.01 0.05 0.10 0.20 0.40 0.60 0.80 1.00

SampleFreq elk thistle 2.02 2.61 2.61 2.61 2.61 4.72 4.72 5.00 3.36
fringed sage 0.00 0.00 0.00 1.51 3.44 0.00 0.00 0.00 0.62
globemallow 0.00 0.00 2.61 2.52 4.72 6.36 6.32 6.11 3.58
gumweed 1.51 3.44 4.91 2.34 6.88 3.37 3.23 3.02 3.59
toadflax 2.02 4.37 7.54 6.88 5.48 5.84 6.07 10.09 6.03
Mean 111 2.08 3.53 3.17 4.62 4.06 4.07 4.84 3.44

Field elk thistle 0.00 3.75 0.00 0.00 3.50 1.51 1.51 1.51 1.47
fringed sage 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
globemallow 0.00 2.02 2.02 2.02 2.02 4.05 4.91 4.05 2.64
gumweed 0.00 2.61 5.22 2.61 6.74 2.61 2.61 2.61 3.13
toadflax 2.24 3.87 4.67 4.67 3.44 3.37 2.34 5.13 3.72
Mean 0.45 2.45 2.38 1.86 3.14 2.31 227 2.66 2.19

precisely, p —1.96 s and p +1.96 s). These are the limits of agreement
between the two methods (Bland and Altman, 1986). Frequency mea-
surements of the two methods differed by —0.07 = 5.4, so we con-
clude that SampleFreq measurements will be no more than 10.7%
below or 10.5% above a comparable field measurement, 95% of the
time. Given that a 20-plot frequency trial has a precision of 5%, an error
of 10.7% is approximately two sampling units. This does not imply that
SampleFreq is in error, as it is just as likely that the SampleFreq data are
more accurate than the field. This simply means that the methods rarely
disagree by more than 10%, and the RMSE value indicates that they
disagree by 3.4%, on average.

Using measurement standard deviation as an indicator of precision,
the standard field method’s precision across all frame sizes and species
was 2.2%, compared to 3.4% for SampleFreq (Table 5). This is 3x and
5x greater than measurements from artificial populations, respectively,
but given the additional variables of texture, height, and pattern pre-
sented by real plants, the lower precision for these measurement data is
expected. Repeatability coefficients were 4.3% and 6.7% for the field
and SampleFreq methods, respectively. This means that any two field
measurements of the same variable should be < 4.3% different, 95% of
the time, and < 6.7% different using SampleFreq (Bland and Altman,
1986). Since imprecise methods will rarely agree, high precision is re-
quired for high method agreement. We regard the difference in preci-
sion between these two methods to be minor and conclude that Sam-
pleFreq data can be regarded as having similar high precision as the
traditional field method.

Contrasting repeatability coefficients of the SampleFreq method
using field images (6.7%) with the artificial population (1.4%) illus-
trates the inherent uncertainties that arise when users are asked to
classify vegetation. Compared to the classification of clear, obvious,
equally-sized colored circles, users lost > 5% repeatability when clas-
sifying more complicated forms and colors of real vegetation. This in-
tuitively makes sense, and we expect that examination of vegetation in
the field similarly reduces classification precision. And while that pre-
cision is still relatively high, the difference between the potential pre-
cision of the method and the actual field precision is one reason why a
permanent image record is so valuable: any doubts of classification
accuracy can be easily examined in SampleFreq at any time. Field
methods do not have a mechanism to doublecheck accuracy, so any
precision shortcomings are not correctable (Cagney et al., 2011).

The pattern of precision by species was identical between the two
methods: highest for fringed sage and lowest for toadflax (Table 5). The
pattern of precision by frame size was different between the two
methods, except that measurements taken on the smallest frame
showed the highest precision for both, which is consistent with the
pattern seen from artificial population measurements.

Regardless of method, accuracy and precision are at least in part

predicated on a user’s positive identification of where a plant is rooted.
Elzinga et al. (1998) discuss the importance of establishing how plants
will be counted near boundaries, and whether the entire stem must be
inside the frame. In some cases, a plant’s canopy may obfuscate that
determination from a nadir perspective. This is a disadvantage of the
SampleFreq method, as well as all remote sensing methods that utilize
nadir imagery (Elzinga et al., 1998; Chase and Chase, 2017). A field
user can push aside vegetation or alter their look angle to make this
determination, but a SampleFreq user cannot. In ecosystems with thick
and overlapping canopy, nadir image analysis of frequency, multi-hit
cover or species richness can’t be expected to yield accurate or precise
results. In arid settings, vegetation is typically low-growing and sparse,
so canopy obfuscation is less a concern. Nevertheless, though we cannot
explicitly test for it, some of the error observed in the SampleFreq
method relative to the field method could be due to the canopy-ob-
fuscation effect, especially when the target plant canopy is adjacent to
the nested frame boundary.

4. Application

Field work utilizing methods like nested frequency involves judg-
ment, and the use of precision software like SampleFreq cannot elim-
inate those judgments. In the field, judgments can never be reexamined;
once the technician leaves the plot, it cannot be precisely recreated. The
distinct advantage of image-based methods is that all judgments made
from imagery can be reexamined. Non-image field data are forever
limited to what the technician recorded. In contrast, the use of digital
images with image analysis software such as SampleFreq, and including
many other programs, allow numerous options for data collection, re-
examination, or recollection, and thus represent more than refinement
of a method (Shultz et al., 1961), but a fundamentally new approach to
vegetation monitoring.

In most temperate regions of the earth, vegetation is most re-
cognizable from imagery during a relatively brief mature phenological
stage where flowers, seeds, mature leaf shapes or colors are observed. A
user can photograph plots in summer, and delay analysis until fall/
winter, allowing more plots to be photographed within a brief pheno-
logical stage of interest, thereby expanding the reach of the monitoring
effort, and increasing statistical power through increased sampling.
Even in the tropics, flowers or fruits that are produced during certain
parts of the year can be important visual clues for plant identification
from imagery. Thus, though traditional field methods are often en-
sconced in natural resource professions, image-based monitoring offers
ample reward to those who refuse to simply “refine the known tech-
niques and standardize their use” (Shultz et al., 1961).

Because image resolution is an important factor in accuracy and
precision of image-based point sampling methods (Booth and Cox,
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2006; Booth and Cox, 2009; Duniway et al., 2012; Weber et al., 2013),
it is likely to be an important consideration for image-based frequency
sampling as well. Field plots in this study were imaged at 0.48 mm GSD.
We presume that since this resolution allowed quick and confident re-
cognition of all cover types that it is sufficient for general field use, but
it is probable that even higher resolution imagery, which is certainly
attainable given improved digital image sensors, will yield frequency
measurements that are more precise and accurate than we have de-
scribed here.

In this study we examined imagery acquired in a semi-arid mixed-
grass prairie of low-growing vegetation (< 40 cm in height); however,
there is no practical reason this technique cannot be used with taller
vegetation, provided the imagery captures the vegetation from a nadir
perspective. In many cases this can be accomplished with a handheld-
camera (Cagney et al., 2011), a terrestrial-based monopod or camera
frame (Booth et al., 2004), or a long boom (Roshier et al., 1997). Taller
vegetation may require the use of unmanned aerial systems (Curran
et al., 2020) or fixed-wing aircraft (Duniway et al., 2012) to capture
nadir perspectives. Regardless of the platform used, or the ecosystem of
interest, SampleFreq can be used to measure plant frequency. As an
example, vegetation point classification from nadir images using the
closely-related program SamplePoint has been completed across many
ecosystems with varying plant communities, including grasslands,
temperate and tropical forests, alpine tundra, salt marshes and deserts
(Guo et al., 2016, Parrish et al., 2017, Skipper et al., 2013, Goonan
et al., 2009, Bacopoulos et al., 2018,Tabeni et al., 2014) as well as
agricultural settings (Nielsen et al., 2015). We therefore think it rea-
sonable to anticipate successful use of SampleFreq in these ecosystems,
with the caveats that image resolution must be adequate for identifi-
cation of the species of interest, and that the vegetation canopy allows
determination of where a plant is rooted.

In any application, image quality is paramount to achieving desired
results. Images must be well-focused with sharp image details present
throughout the image. A small lens aperture (e.g. f/22) is desired be-
cause it achieves a greater depth of field within the image such that
image elements in the canopy and on the ground are in sharp focus (a
large image aperture will result in only portions of the image in sharp
focus); however, in low light a larger aperture may be required for
proper exposure. Fast shutter speeds (<1/250 sec) are recommended to
avoid image motion blur due to camera shake or vegetation movement
due to wind. Maintaining optimal shutter speed and aperture for a
proper exposure can usually be achieved through adjustment of the
digital camera sensor’s gain (denoted by ISO, a carryover from when
photographic film’s numerical light sensitivity was determined by the
International Standards Organization). Proper exposure of both sha-
dows and highlights is critical for image analysis, and techniques to
mediate shadows include shading the plot or utilizing high dynamic
range imagery (Booth et al., 2004; Cox and Booth, 2008). In all cases,
capturing non-lossy 12-14 bit raw image files allows users to recover
details in highlights and shadows through post-processing that are
otherwise lost when capturing image files using 8-bit lossy JPG format.
While capturing an image, the operator of the camera should position
themselves to cast their shadow behind them, and not in the plot.

5. Conclusions

e SampleFreq can assist users in collecting accurate and precise data
that has close agreement with data collected using standard field
methods. We recommend using SampleFreq with nadir digital
images as an advantageous alternative to standard methods for
monitoring plant frequency.

e SampleFreq accuracy varied by frame size and we conclude that our
speculated reasons may apply equally to standard field methods. We
recommend users of standard field methods be aware of a possible
effect of frame size on data-collection accuracy.

e SampleFreq classification accuracy decreased with user age within
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the range of 20-54 years. The reasons for this are not known.
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